Get access to all lessons in this course.
-
Welcome
- Welcome to Inferential Statistics with R
- Introduction to the Dataset
-
t-tests
- Independent t-test
- Dependent t-test
-
One-Way ANOVA
- One-Way ANOVA
- Post Hoc Comparisons
- Other ANOVA Tests
-
Chi-Square
- Chi-Square
- Dealing with Small Cells
-
Correlation
- Correlation
-
Regression
- Linear Regression
- Multiple Regression
- Hierarchical Regression
-
Reliability
- Reliability
-
Reporting Results
- Extracting Output
- Reporting Results
-
Testing Assumptions
- Testing Assumptions
- Testing for Normality
- Testing for Homogeneity of Variance
- Violated Assumptions
Inferential Statistics with R
Testing Assumptions
This lesson is locked
This lesson is called Testing Assumptions, part of the Inferential Statistics with R course. This lesson is called Testing Assumptions, part of the Inferential Statistics with R course.
Transcript
Click on the transcript to go to that point in the video. Please note that transcripts are auto generated and may contain minor inaccuracies.
Your Turn
Read through the Learn More documents below for more information on the importance of testing the assumptions of the statistics you perform.
Learn More
Read more about the assumptions for parametric tests.
You need to be signed-in to comment on this post. Login.