Get access to all lessons in this course.
-
Welcome to Data Cleaning with R
- What is Data Cleaning?
- Course Logistics and Materials
-
Data Organization
- Data Organization Best Practices
- Tidy Data
- Grouping and Indicator Variables
- NA and Empty Values
- Data Sharing Best Practices
-
Restructuring Data
- Tidyverse Refresher
- Working with Columns with across()
- Pivoting Data
- coalesce() and fill()
-
Regular Expressions
- What are Regular Expressions?
- Understanding and Testing Regular Expressions
- Literal Characters and Metacharacters
- Metacharacters: Quantifiers
- Metacharacters: Alternation, Special Sequences, and Escapes
- Combining Metacharacters
- Regex in R
- Regular Expressions and Data Cleaning, Part 1
- Regular Expressions and Data Cleaning, Part 2
-
Common Issues
- Common Issues in Data Cleaning
- Unusable Variable Names
- Whitespace
- Letter Case
- Missing, Implicit, or Misplaced Grouping Variables
- Compound Values
- Duplicated Values
- Broken Values
- Empty Rows and Columns
- Parsing Numbers
- Putting Everything Together
Data Cleaning with R
Duplicated Values
This lesson is locked
This lesson is called Duplicated Values, part of the Data Cleaning with R course. This lesson is called Duplicated Values, part of the Data Cleaning with R course.
Transcript
Click on the transcript to go to that point in the video. Please note that transcripts are auto generated and may contain minor inaccuracies.
Your Turn
Load the messy Age of Empires units dataset bundled with unheadr
(AOEunits_raw) and keep only units of Type “Cavalry”.
Identify duplicated records across all variables.
Remove duplicated records across all variables.
Learn More
Kaggle ran a data cleaning challenge focused on deduplicating data. Their code has examples of ways to deduplicate using R.
You need to be signed-in to comment on this post. Login.