Add Descriptive Labels to Your Plots
This lesson is called Add Descriptive Labels to Your Plots, part of the R in 3 Months (Spring 2025) course. This lesson is called Add Descriptive Labels to Your Plots, part of the R in 3 Months (Spring 2025) course.
Transcript
Click on the transcript to go to that point in the video. Please note that transcripts are auto generated and may contain minor inaccuracies.
View code shown in video
# Load Packages -----------------------------------------------------------
library(tidyverse)
library(fs)
library(scales)
library(ggrepel)
# Create Directory --------------------------------------------------------
dir_create("data")
# Download Data -----------------------------------------------------------
# download.file("https://github.com/rfortherestofus/going-deeper-v2/raw/main/data/third_grade_math_proficiency.rds",
# mode = "wb",
# destfile = "data/third_grade_math_proficiency.rds")
# Import Data -------------------------------------------------------------
third_grade_math_proficiency <-
read_rds("data/third_grade_math_proficiency.rds") |>
select(academic_year, school, school_id, district, proficiency_level, number_of_students) |>
mutate(is_proficient = case_when(
proficiency_level >= 3 ~ TRUE,
.default = FALSE
)) |>
group_by(academic_year, school, district, school_id, is_proficient) |>
summarize(number_of_students = sum(number_of_students, na.rm = TRUE)) |>
ungroup() |>
group_by(academic_year, school, district, school_id) |>
mutate(percent_proficient = number_of_students / sum(number_of_students, na.rm = TRUE)) |>
ungroup() |>
filter(is_proficient == TRUE) |>
select(academic_year, school, district, percent_proficient) |>
rename(year = academic_year) |>
mutate(percent_proficient = case_when(
is.nan(percent_proficient) ~ NA,
.default = percent_proficient
))
# Plot --------------------------------------------------------------------
top_growth_school <-
third_grade_math_proficiency |>
filter(district == "Portland SD 1J") |>
group_by(school) |>
mutate(growth_from_previous_year = percent_proficient - lag(percent_proficient)) |>
ungroup() |>
drop_na(growth_from_previous_year) |>
slice_max(order_by = growth_from_previous_year,
n = 1) |>
pull(school)
third_grade_math_proficiency |>
filter(district == "Portland SD 1J") |>
mutate(highlight_school = case_when(
school == top_growth_school ~ "Y",
.default = "N"
)) |>
mutate(percent_proficient_formatted = case_when(
school == top_growth_school ~ percent(percent_proficient, accuracy = 1)
)) |>
mutate(percent_proficient_formatted = case_when(
highlight_school == "Y" & year == "2021-2022" ~ str_glue("{percent_proficient_formatted} of students
were proficient
in {year}"),
highlight_school == "Y" & year == "2018-2019" ~ percent_proficient_formatted
)) |>
mutate(school = fct_relevel(school, top_growth_school, after = Inf)) |>
ggplot(aes(x = year,
y = percent_proficient,
group = school,
color = highlight_school,
label = percent_proficient_formatted)) +
geom_line() +
geom_text_repel(hjust = 0,
lineheight = 0.9,
direction = "x") +
scale_color_manual(values = c(
"N" = "grey90",
"Y" = "orange"
)) +
scale_y_continuous(labels = percent_format()) +
theme_minimal() +
theme(axis.title = element_blank(),
legend.position = "none",
panel.grid = element_blank())
Your Turn
Add text labels to show the percentage of Hispanic/Latino students in the highlight district in each year
Format the axis text so it shows percentages
Learn More
To learn more about the packages used in this lesson, check out the docs for the ggrepel and scales packages.
To learn about the power of effectively adding text to your plots, check out the work of Cara Thompson.
Have any questions? Put them below and we will help you out!
Course Content
127 Lessons
You need to be signed-in to comment on this post. Login.