Week 11 Live Session (Spring 2025)
This lesson is called Week 11 Live Session (Spring 2025), part of the R in 3 Months (Spring 2025) course. This lesson is called Week 11 Live Session (Spring 2025), part of the R in 3 Months (Spring 2025) course.
Transcript
Click on the transcript to go to that point in the video. Please note that transcripts are auto generated and may contain minor inaccuracies.
View code shown in video
Theme
library(tidyverse)
library(ggtext)
library(palmerpenguins)
theme_dk <- function(show_gridlines = FALSE, show_axis_text = TRUE) {
basic_theme <-
theme_minimal() +
theme(
axis.title = element_blank(),
plot.title = element_markdown(),
plot.title.position = "plot",
panel.grid = element_blank(),
axis.text = element_text(color = "grey60", size = 10)
)
if (show_gridlines == TRUE) {
basic_theme <-
basic_theme +
theme(
panel.grid.major = element_line(color = "grey80")
)
}
if (show_axis_text == FALSE) {
basic_theme <-
basic_theme +
theme(
axis.text = element_blank()
)
}
basic_theme
}
theme_dk_v2 <- function(plot_type) {
basic_theme <-
theme_minimal() +
theme(
axis.title = element_blank(),
plot.title = element_markdown(),
plot.title.position = "plot",
panel.grid = element_blank(),
axis.text = element_text(color = "grey60", size = 10)
)
if (plot_type == "horizontal bar chart") {
basic_theme <-
basic_theme +
theme(
axis.text = element_blank()
)
}
if (plot_type == "map") {
basic_theme <-
basic_theme +
theme(
axis.text = element_blank()
)
}
basic_theme
}
penguin_bar_chart <-
penguins |>
group_by(island) |>
summarize(mean_bill_length = mean(bill_length_mm, na.rm = TRUE)) |>
ggplot(
aes(
x = island,
y = mean_bill_length,
label = island,
fill = island
)
) +
geom_col() +
labs(title = "Biscoe penguins have the longest bills on average")
penguin_bar_chart
penguin_bar_chart +
theme_dk(show_gridlines = TRUE)
Mapping
library(tidyverse)
library(janitor)
library(sf)
# Portland ----------------------------------------------------------------
portland_boundaries <-
read_sf("data-raw/City_Boundaries.geojson") |>
clean_names() |>
filter(cityname == "Portland")
portland_boundaries |>
ggplot() +
geom_sf()
traffic_signals <-
read_sf("data-raw/Traffic_Signals.geojson") |>
clean_names()
traffic_signals |>
ggplot() +
geom_sf()
snow_and_ice_routes <-
read_sf("data-raw/Snow_and_Ice_Routes.geojson") |>
clean_names()
snow_and_ice_routes |>
ggplot() +
geom_sf()
ggplot() +
geom_sf(data = portland_boundaries) +
geom_sf(data = traffic_signals,
aes(color = software_type),
alpha = 0.5,
size = 1) +
geom_sf(data = snow_and_ice_routes) +
theme_dk(show_axis_text = FALSE)
# Tigris ------------------------------------------------------------------
library(tigris)
us_states <- states()
us_states |>
shift_geometry() |>
ggplot() +
geom_sf()
kentucky_counties <- counties(state = "Kentucky")
kentucky_counties |>
ggplot() +
geom_sf()
# Median Income -----------------------------------------------------------
library(tidycensus)
library(scales)
median_income <-
get_acs(
state = "Washington",
geography = "county",
variables = "B19013_001",
geometry = TRUE
)
median_income |>
ggplot(aes(fill = estimate)) +
geom_sf()
# International Data ------------------------------------------------------
library(rnaturalearth)
iceland <-
ne_countries(
country = "Iceland",
scale = "large",
returnclass = "sf"
) |>
select(sovereignt)
ggplot(data = iceland) +
geom_sf()
# Interactive -------------------------------------------------------------
library(ggiraph)
median_income_interactive_plot <-
median_income |>
ggplot(aes(
fill = estimate,
tooltip = estimate
)) +
geom_sf_interactive()
girafe(ggobj = median_income_interactive_plot)
Have any questions? Put them below and we will help you out!
Course Content
127 Lessons
1
Welcome to Getting Started with R
00:57
2
Install R
02:05
3
Install RStudio
02:14
4
Files in R
04:33
5
Projects
07:54
6
Packages
02:38
7
Import Data
05:24
8
Objects and Functions
03:16
9
Examine our Data
12:50
10
Import Our Data Again
07:11
11
Getting Help
07:46
12
Week 1 Live Session (Spring 2025)
1:03:11
1
Welcome to Fundamentals of R
01:36
2
Update Everything
02:45
3
Start a New Project
02:16
4
The Tidyverse
03:34
5
Pipes
04:15
6
select()
07:25
7
mutate()
04:25
8
filter()
10:05
9
summarize()
05:59
10
group_by() and summarize()
05:54
11
arrange()
02:07
12
Create a New Data Frame
03:58
13
Bring it All Together (Data Wrangling)
07:29
14
Week 2 Project Assignment
09:39
15
Week 2 Coworking Session (Spring 2025)
16
Week 2 Live Session (Spring 2025)
1:03:24
1
The Grammar of Graphics
04:39
2
Scatterplots
03:46
3
Histograms
05:47
4
Bar Charts
06:37
5
Setting color and fill Aesthetic Properties
02:39
6
Setting color and fill Scales
05:40
7
Setting x and y Scales
03:09
8
Adding Text to Plots
07:32
9
Plot Labels
03:57
10
Themes
02:19
11
Facets
03:12
12
Save Plots
02:57
13
Bring it All Together (Data Visualization)
06:42
14
Week 3 Project Assignment
03:30
15
Week 3 Coworking Session (Spring 2025)
16
Week 3 Live Session (Spring 2025)
1:02:31
1
Downloading and Importing Data
10:32
2
Overview of Tidy Data
05:50
3
Tidy Data Rule #1: Every Column is a Variable
07:43
4
Tidy Data Rule #3: Every Cell is a Single Value
10:04
5
Tidy Data Rule #2: Every Row is an Observation
04:42
6
Week 6 Coworking Session (Spring 2025)
7
Week 6 Live Session (Spring 2025)
1:02:38
1
Best Practices in Data Visualization
03:44
2
Tidy Data
02:25
3
Pipe Data into ggplot
09:54
4
Reorder Plots to Highlight Findings
03:37
5
Line Charts
04:17
6
Use Color to Highlight Findings
09:16
7
Declutter
08:29
8
Add Descriptive Labels to Your Plots
09:10
9
Use Titles to Highlight Findings
08:14
10
Use Annotations to Explain
07:09
11
Week 9 Coworking Session (Spring 2025)
12
Week 9 Live Session (Spring 2025)
59:09
1
Advanced Markdown
06:43
2
Tables
18:36
3
Advanced YAML and Code Chunk Options
05:53
4
Inline R Code
04:42
5
Making Your Reports Shine: Word Edition
04:30
6
Making Your Reports Shine: PDF Edition
06:11
7
Making Your Reports Shine: HTML Edition
06:06
8
Presentations
10:12
9
Dashboards
05:38
10
Websites
06:43
11
Publishing Your Work
04:38
12
Quarto Extensions
05:50
13
Parameterized Reporting, Part 1
10:57
14
Parameterized Reporting, Part 2
05:11
15
Parameterized Reporting, Part 3
07:47
16
Week 12 Coworking Session (Spring 2025)
17
Week 12 Live Session (Spring 2025)
57:01
You need to be signed-in to comment on this post. Login.
Mike LeVan • May 23, 2025
I am working through the Iceland example (55:08) and when I use your code I get an error. I am being asked to install "rnaturalearthhires( )". It looks like I might need some credentials to do this?
Here is my console output :
======================== The rnaturalearthhires package needs to be installed. Install the rnaturalearthhires package?
1: Yes 2: No
Selection: 1 Installing the rnaturalearthhires package. Using GitHub PAT from the git credential store. Error in value[3L] : Failed to install the rnaturalearthhires package. Please try installing the package for yourself using the following command: devtools::install_github("ropensci/rnaturalearthhires")
Rate limit remaining: 49/60 Rate limit reset at: 2025-05-23 02:14:38 UTC
Gracielle Higino Coach • May 23, 2025
Hey Mike! I've seen people trying everything to install this package and getting all sorts of errors 😂 Try using the
{remotes}
package, with this command:Or even designating the source repository in your
install.packages()
function:Let us know if any of these solve the problem!