Skip to content
R for the Rest of Us Logo

Going Deeper with R

Add Descriptive Labels to Your Plots

Transcript

Click on the transcript to go to that point in the video. Please note that transcripts are auto generated and may contain minor inaccuracies.

View code shown in video
# Load Packages -----------------------------------------------------------

library(tidyverse)
library(fs)
library(scales)
library(ggrepel)

# Create Directory --------------------------------------------------------

dir_create("data")

# Download Data -----------------------------------------------------------

# download.file("https://github.com/rfortherestofus/going-deeper-v2/raw/main/data/third_grade_math_proficiency.rds",
#               mode = "wb",
#               destfile = "data/third_grade_math_proficiency.rds")

# Import Data -------------------------------------------------------------

third_grade_math_proficiency <- 
  read_rds("data/third_grade_math_proficiency.rds") |> 
  select(academic_year, school, school_id, district, proficiency_level, number_of_students) |> 
  mutate(is_proficient = case_when(
    proficiency_level >= 3 ~ TRUE,
    .default = FALSE
  )) |> 
  group_by(academic_year, school, district, school_id, is_proficient) |> 
  summarize(number_of_students = sum(number_of_students, na.rm = TRUE)) |> 
  ungroup() |> 
  group_by(academic_year, school, district, school_id) |> 
  mutate(percent_proficient = number_of_students / sum(number_of_students, na.rm = TRUE)) |> 
  ungroup() |> 
  filter(is_proficient == TRUE) |> 
  select(academic_year, school, district, percent_proficient) |> 
  rename(year = academic_year) |> 
  mutate(percent_proficient = case_when(
    is.nan(percent_proficient) ~ NA,
    .default = percent_proficient
  ))

# Plot --------------------------------------------------------------------

top_growth_school <- 
  third_grade_math_proficiency |>
  filter(district == "Portland SD 1J") |> 
  group_by(school) |> 
  mutate(growth_from_previous_year = percent_proficient - lag(percent_proficient)) |> 
  ungroup() |> 
  drop_na(growth_from_previous_year) |>
  slice_max(order_by = growth_from_previous_year,
            n = 1) |> 
  pull(school)

third_grade_math_proficiency |>
  filter(district == "Portland SD 1J") |>
  mutate(highlight_school = case_when(
    school == top_growth_school ~ "Y",
    .default = "N"
  )) |> 
  mutate(percent_proficient_formatted = case_when(
    school == top_growth_school ~ percent(percent_proficient, accuracy = 1)
  )) |> 
  mutate(percent_proficient_formatted = case_when(
    highlight_school == "Y" & year == "2021-2022" ~ str_glue("{percent_proficient_formatted} of students
                                                             were proficient 
                                                             in {year}"),
    highlight_school == "Y" & year == "2018-2019" ~ percent_proficient_formatted
  )) |> 
  mutate(school = fct_relevel(school, top_growth_school, after = Inf)) |>
  ggplot(aes(x = year,
             y = percent_proficient,
             group = school,
             color = highlight_school,
             label = percent_proficient_formatted)) +
  geom_line() +
  geom_text_repel(hjust = 0,
                  lineheight = 0.9,
                  direction = "x") +
  scale_color_manual(values = c(
    "N" = "grey90",
    "Y" = "orange"
  )) +
  scale_y_continuous(labels = percent_format()) +
  theme_minimal() +
  theme(axis.title = element_blank(),
        legend.position = "none",
        panel.grid = element_blank())

Your Turn

  1. Add text labels to show the percentage of Hispanic/Latino students in the highlight district in each year

  2. Format the axis text so it shows percentages

Learn More

To learn more about the packages used in this lesson, check out the docs for the ggrepel and scales packages.

To learn about the power of effectively adding text to your plots, check out the work of Cara Thompson.

Have any questions? Put them below and we will help you out!

You need to be signed-in to comment on this post. Login.

Course Content

44 Lessons