Skip to content
R in 3 Months Starts March 13. Learn More →
R for the Rest of Us Logo

Going Deeper with R

Dealing with Missing Data

Transcript

Click on the transcript to go to that point in the video. Please note that transcripts are auto generated and may contain minor inaccuracies.

View code shown in video
# Load Packages -----------------------------------------------------------

library(tidyverse)
library(fs)
library(readxl)
library(janitor)

# Create Directories ------------------------------------------------------

dir_create("data-raw")

# Download Data -----------------------------------------------------------

# https://www.oregon.gov/ode/educator-resources/assessment/Pages/Assessment-Group-Reports.aspx

# download.file("https://www.oregon.gov/ode/educator-resources/assessment/Documents/TestResults2122/pagr_schools_math_tot_raceethnicity_2122.xlsx",
#               mode = "wb",
#               destfile = "data-raw/pagr_schools_math_tot_raceethnicity_2122.xlsx")
# 
# download.file("https://www.oregon.gov/ode/educator-resources/assessment/Documents/TestResults2122/TestResults2019/pagr_schools_math_tot_raceethnicity_1819.xlsx",
#               mode = "wb",
#               destfile = "data-raw/pagr_schools_math_tot_raceethnicity_1819.xlsx")
# 
# download.file("https://www.oregon.gov/ode/educator-resources/assessment/TestResults2018/pagr_schools_math_raceethnicity_1718.xlsx",
#               mode = "wb",
#               destfile = "data-raw/pagr_schools_math_raceethnicity_1718.xlsx")
# 
# download.file("https://www.oregon.gov/ode/educator-resources/assessment/TestResults2017/pagr_schools_math_raceethnicity_1617.xlsx",
#               mode = "wb",
#               destfile = "data-raw/pagr_schools_math_raceethnicity_1617.xlsx")
# 
# download.file("https://www.oregon.gov/ode/educator-resources/assessment/TestResults2016/pagr_schools_math_raceethnicity_1516.xlsx",
#               mode = "wb",
#               destfile = "data-raw/pagr_schools_math_raceethnicity_1516.xlsx")


# Import Data -------------------------------------------------------------

math_scores_2021_2022 <-
  read_excel(path = "data-raw/pagr_schools_math_tot_raceethnicity_2122.xlsx") |> 
  clean_names()


# Tidy and Clean Data -----------------------------------------------------

third_grade_math_proficiency_2021_2022 <-
  math_scores_2021_2022 |> 
  filter(student_group == "Total Population (All Students)") |> 
  filter(grade_level == "Grade 3") |> 
  select(academic_year, school_id, contains("number_level")) |> 
  pivot_longer(cols = starts_with("number_level"),
               names_to = "proficiency_level",
               values_to = "number_of_students") |> 
  mutate(proficiency_level = case_when(
    proficiency_level == "number_level_4" ~ "4",
    proficiency_level == "number_level_3" ~ "3",
    proficiency_level == "number_level_2" ~ "2",
    proficiency_level == "number_level_1" ~ "1"
  )) 

third_grade_math_proficiency_2021_2022 |> 
  count(number_of_students) |> 
  view()

third_grade_math_proficiency_2021_2022 |> 
  mutate(number_of_students = na_if(number_of_students, "*")) |> 
  mutate(number_of_students = na_if(number_of_students, "-")) |> 
  mutate(number_of_students = na_if(number_of_students, "--")) |> 
  mutate(number_of_students = as.numeric(number_of_students))

Your Turn

  1. Convert all of the missing values in the number_of_students variable to NA using na_if().

  2. Convert all of the NA values you just made to 0 using replace_na().

Use this code to get started.

# Load Packages -----------------------------------------------------------

library(tidyverse)
library(fs)
library(readxl)
library(janitor)

# Create Directories ------------------------------------------------------

dir_create("data-raw")

# Download Data -----------------------------------------------------------

# https://www.oregon.gov/ode/reports-and-data/students/Pages/Student-Enrollment-Reports.aspx

# download.file("https://www.oregon.gov/ode/reports-and-data/students/Documents/fallmembershipreport_20222023.xlsx",
#               mode = "wb",
#               destfile = "data-raw/fallmembershipreport_20222023.xlsx")
# 
# download.file("https://www.oregon.gov/ode/reports-and-data/students/Documents/fallmembershipreport_20212022.xlsx",
#               mode = "wb",
#               destfile = "data-raw/fallmembershipreport_20212022.xlsx")
# 
# download.file("https://www.oregon.gov/ode/reports-and-data/students/Documents/fallmembershipreport_20202021.xlsx",
#               mode = "wb",
#               destfile = "data-raw/fallmembershipreport_20202021.xlsx")
# 
# download.file("https://www.oregon.gov/ode/reports-and-data/students/Documents/fallmembershipreport_20192020.xlsx",
#               mode = "wb",
#               destfile = "data-raw/fallmembershipreport_20192020.xlsx")
# 
# download.file("https://www.oregon.gov/ode/reports-and-data/students/Documents/fallmembershipreport_20182019.xlsx",
#               mode = "wb",
#               destfile = "data-raw/fallmembershipreport_20182019.xlsx")

# Import Data -------------------------------------------------------------

enrollment_2022_2023 <- read_excel(path = "data-raw/fallmembershipreport_20222023.xlsx",
                                   sheet = "School 2022-23") |> 
  clean_names()

# Tidy and Clean Data -----------------------------------------------------

enrollment_by_race_ethnicity_2022_2023 <-
  enrollment_2022_2023 |> 
  select(district_institution_id, school_institution_id,
         x2022_23_american_indian_alaska_native:x2022_23_multi_racial) |> 
  select(-contains("percent")) |> 
  pivot_longer(cols = -c(district_institution_id, school_institution_id),
               names_to = "race_ethnicity",
               values_to = "number_of_students") |> 
  mutate(race_ethnicity = str_remove(race_ethnicity, pattern = "x2022_23_")) |> 
  mutate(race_ethnicity = case_when(
    race_ethnicity == "american_indian_alaska_native" ~ "American Indian Alaska Native",
    race_ethnicity == "asian" ~ "Asian",
    race_ethnicity == "black_african_american" ~ "Black/African American",
    race_ethnicity == "hispanic_latino" ~ "Hispanic/Latino",
    race_ethnicity == "multiracial" ~ "Multi-Racial",
    race_ethnicity == "native_hawaiian_pacific_islander" ~ "Native Hawaiian Pacific Islander",
    race_ethnicity == "white" ~ "White",
    race_ethnicity == "multi_racial" ~ "Multiracial"
  ))

Learn More

The best place to learn about replace_na() is on the tidyr website, which has an excellent documentation page about the function.na_if() comes from the dplyr package so check it out there.

I referenced the read_csv() function having an na argument early on in the video. The read_excel() function has an na argument as well. The na arguments in these two functions can help you deal with missing data on import. However, replace_na() and na_if() are good to know because you don’t always have this option!

If you want to go deep on exploring missing data in your datasets in R, there is a package called naniar that will help. Allison Horst also has a really nice tutorial on using it here.

Have any questions? Put them below and we will help you out!

You need to be signed-in to comment on this post. Login.

Jorge Eduardo Baquero

Jorge Eduardo Baquero • April 30, 2024

Hi David, I wonder what would be the difference between

third_grade_math_proficiency_2021_2022 |> mutate(....) |> mutate(....) |> mutate(....)

and

third_grade_math_proficiency_2021_2022 |> mutate(old_variable1 = new_variable1, old_variable2 = new_variable2, old_variable3 = new_variable3)

I remember reading (or watching) somewhere that is essentially the same. Is it?

David Keyes

David Keyes Founder • April 30, 2024

Yes, you're right that they are the same. I tend to do multiple mutate() calls, though I'm not totally sure why.

Course Content

44 Lessons